
A case study of methods of series summation:
Kelvin–Helmholtz instability of finite amplitude

M.A.H. Khan a, Y. Tourigny a,*, P.G. Drazin b

a School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
b School of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Received 22 October 2001; received in revised form 5 February 2003; accepted 8 February 2003

Abstract

We compute the singularities of the solution of the Birkhoff–Rott equation that governs the evolution of a planar

periodic vortex sheet. Our approach uses the Taylor series obtained by Meiron et al. [J. Fluid Mech. 114 (1982) 283] for

a flat sheet subject initially to a sinusoidal disturbance of amplitude a. The series is then summed by using various

generalisations of the Pad�ee method. We find approximate values for the location and type of the principal singularity as

a ranges from zero to infinity. Finally, the results are used as a basis to guide the choice of methods of summing series

arising from problems in fluid mechanics.
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1. Introduction

Many believe that diverse solutions of mathematical problems of fluid mechanics with smooth initial

data develop singularities after finite times. The question of existence and regularity of solutions for large

times is fundamental not only for its mathematical importance but also for its implications about the

physical modelling of real flows by the Euler and Navier–Stokes equations. Indeed, this issue is at the heart
of one of the prize millenium problems set by the Clay Institute [3].

A common method to solve such initial-value problems has been to expand the solution in powers of the

time, compute several terms of the power series, and sum the series by rational Pad�ee approximation or its

generalisations [8,10,12]. This method cannot prove that a singularity does develop after a finite time, but

often produces convincing approximations of the time when a singularity appears to develop. These ap-

proximations are widely accepted by the fluid mechanics community.

Journal of Computational Physics 187 (2003) 212–229

www.elsevier.com/locate/jcp

*Corresponding author.

E-mail address: y.tourigny@bris.ac.uk (Y. Tourigny).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00096-2

mail to: y.tourigny@bris.ac.uk


This paper focuses on one such initial-value problem, Kelvin–Helmholtz instability of finite amplitude,

using it as a case study to illustrate the merits and demerits of various methods of series summation. As we

shall see, in this particular case, the comparison suggests that rational Pad�ee approximation, the most widely

used method of series summation, is inferior to other methods. We offer some general guidance to choose

appropriate methods for other types of problems.

Kelvin–Helmholtz instability concerns the growth of perturbations of the plane interface between two

uniform parallel streams of incompressible inviscid fluids, and in particular the perturbation of a vortex

sheet in one fluid. We shall confine our analysis to the special case of a periodic vortex sheet in one fluid.
Then the evolution of the perturbed vortex sheet is governed by the periodic form of the Birkhoff–Rott

equation [2,10]

oz�

ot
ðe; tÞ ¼ 1

4pi
P:V:

Z 2p

0

cðe0Þ cot zðe; tÞ � zðe0; tÞ
2

� �
de0: ð1Þ

The integral in this expression is a Cauchy principal value integral, e is a Lagrangian marker variable, t
represents time, z ¼ xþ iy is a parametric representation of the sheet, the asterisk denotes complex con-

jugation and c is related to the vortex sheet strength – essentially, the jump across the sheet in the tangential

fluid velocity.

In his seminal paper, Moore [11] studied the particular case

zðe; 0Þ ¼ eþ e sin e; cðeÞ ¼ 1 ; e > 0: ð2Þ

By considering the initial-value problem (1) + (2) in Fourier space, Moore found a relatively simple

approximation of the Birkhoff–Rott equation, and showed that the solution of this simplified model
has a real singularity that corresponds to a point of infinite curvature on the vortex sheet. This led

him to conjecture that the solution of the full model (1) + (2) also has a real singularity at some

critical time, say tc. This conjecture has not yet been proved, but there is much compelling evidence

to support it.

Siegel [15] and Cowley et al. [4] present systematic attempts to improve Moore�s simplified model by

using analytic continuation in the variable e. The equations obtained in this way are asymptotic approx-

imations of the Birkhoff–Rott equations in the limit as Ime ! 1 and, therefore, cannot be expected to

yield quantitative information on the location of the real singularities. Nevertheless, the qualitative infer-
ence from these studies is that complex singularities of the vortex sheet move in the e plane until one reaches
the real axis at the critical time tc. Krasny [9], Shelley [14] and others provided further support for the

existence of a critical time by direct numerical simulation of the Birkhoff–Rott equation. Typically, such

simulations are accurate as long as the solution remains smooth. The erratic, mesh-dependent behaviour of

the numerical solution for large times is symptomatic of the existence of a critical time.

If a real singularity exists, then it must be possible to compute it to any desired accuracy by performing

enough arithmetic operations. The best strategy for locating the singularity of an analytic function accu-

rately is to process its Taylor series coefficients [18]. This is the approach taken by Meiron et al. [10], who
consider the particular case where the sheet is initially flat and set in motion impulsively by a sinusoidal

disturbance of c:

zðe; 0Þ ¼ e; cðeÞ ¼ 1þ a cos e ; a ¼ const: ð3Þ

They expand the solution in a Taylor series in powers of t and, using Pad�ee approximants, compute tc for
various values of a with a relative error that is roughly 2%. One purpose of this paper is to re-examine the

Taylor series for the solution of the problem (1) + (3) and, by use of powerful generalisations of the Pad�ee
method, to compute the critical time tc for a wide range of the parameter a to an accuracy much greater

than that achieved by Meiron et al. [10]. As a practical application, we study the dependence of the critical
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time upon the parameter a. Other calculations are performed: We compute, for a fixed a, the motion of the

singularity in the complex e plane as time evolves. We also compute the first two terms in the expansion of

the solution in fractional powers of tc � t at the singularity.

The remainder of the paper is as follows: In Section 2, we derive a recurrence relation for the Taylor

coefficients of the solution z of the problem (1) + (3). Our approach is very similar to that of Meiron et al.

[10], but our treatment of the troublesome principal value integral is more efficient. With the benefit of

twenty years of advances in computing hardware, we are able to find many more terms of the series for

general a in exact arithmetic. The methods used to sum the series are described in Section 3. Our main tool
is the particular type of algebraic approximant developed by Drazin and Tourigny [5,6]. In addition, we

shall use differential approximants to compute the exponent of the singularity. Section 4 is devoted to a

detailed study of the particular case a ¼ 1. The limit as a ! 1 is studied in Section 5. Finally, we present

our conclusions in Section 6.

2. A Taylor series

When a ¼ 0, the initial-value problem (1) + (3) is easily solved. It is therefore natural to seek an ex-

pansion in ascending powers of a. By direct calculation, it is found that

zðe; tÞ ¼ eþ
X1
n¼1

an
Xn
k¼1

zðkÞn ðtÞ sinðkeÞ
 !

as a ! 0: ð4Þ

Hence the coefficient of each power of a is a finite sum of sines. The coefficients zðkÞn are made up of powers
of t and of exponentials of t. (Explicit formulae for expressions that are essentially equivalent to the first few

zðkÞn are given in [10, p. 287].) The upshot of Moore�s analysis is that, in the limit as t ! 1, the nth coefficient

is asymptotic to

i� 1

2

nn�2

n!
t
4

� �n�1

exp n
t
2

� �
sin neð Þ:

It is tempting to deduce from this observation that

zðe; tÞ 
 eþ 2i� 2

t

X1
n¼1

nt
a
4
exp

t
2

� �h in sin neð Þ
n2n!

as a ! 0: ð5Þ

A rigorous justification of this relationship would be a major undertaking, for there are various competing

limits involved, namely a ! 0, n ! 1 and t ! 1. Nevertheless, if we proceed heuristically and accept the

validity of the formula (5), we see that the Fourier coefficients of z decay exponentially as n ! 1 up to

some critical time tc given asymptotically by the formula

ln tc þ
tc
2
þ 1 
 ln

4

a
as a ! 0: ð6Þ

The dashed curve in Fig. 1 is obtained by using this formula.

Although quite a few of the zðkÞn can be found explicitly by use of symbolic algebra programmes such as

MAPLE, the expressions obtained are so complicated that the series (4) is unsuitable for numerical work.

We shall therefore imitate Meiron et al. [10] and compute the terms in the Taylor series

zðe; tÞ ¼
X1
n¼0

ZnðeÞtn as t ! 0: ð7Þ
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Clearly, in view of the form of the coefficients in the expansion (4), we can write

ZnðeÞ ¼
Xn
k¼1

ZðkÞ
n sinðkeÞ for nP 1; ð8Þ

where the ZðkÞ
n are polynomials in a.

In order to find a recurrence relation for the Zn, we introduce a series for the cot term

cot
zðe; tÞ � zðe0; tÞ

2

� �
¼:
X1
n¼0

Ynðe; e0Þtn:

The Birkhoff–Rott equation (1) then gives

ðnþ 1ÞZ�
nþ1ðeÞ ¼

1

4pi
P:V:

Z 2p

0

1ð þ a cos e0ÞYnðe; e0Þde0 : ð9Þ

From the identity

d

du
cot u ¼ �1� cot2 u;

we deduce the following recurrence relation for Yn:

nYn ¼ �Wn �
Xn
k¼1

WkVnþ1�k; ð10Þ

where

Wnðe; e0Þ ¼
n
2
ZnðeÞ½ � Znðe0Þ� and Vn ¼

Xn
k¼0

YkYn�k; n 2 N: ð11Þ

The main difficulty is the evaluation of the Cauchy principal value integral on the right-hand side of Eq. (9).
We could follow Meiron et al. [10] and regularise the integrand by subtracting from it the product

2

4

6

8

0.2       0.4                         0.6                        0.8                         1

tc

a

Fig. 1. The critical time tc as a function of a. The dashed curve shows Moore�s approximation given by the asymptotic formula (6). The

solid curve is computed by the methods of Section 3.
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ð1þ a cos eÞ cot zðe; tÞ � zðe0; tÞ
2

� �
ozðe0; tÞ=oe0
ozðe; tÞ=oe ;

whose principal value integral vanishes. The integral would become a proper one, but at the price of in-

troducing an additional multiplication and division. We choose to take a different route. First, introduce

the new variable

h ¼ e� e0

2
;

so that (9) becomes

ðnþ 1ÞZ�
nþ1ðeÞ ¼

1

2pi
P:V:

Z e=2

e=2�p
1½ þ a cos e cosð2hÞ þ a sin e sinð2hÞ�Ynðe; e� 2hÞdh: ð12Þ

For the first few values of n, direct calculations reveal that

sin hYnðe; e� 2hÞ ¼ Y ð1Þ
n ðhÞ þ

Xn
k¼1

sin hY ð2kÞ
n ðhÞ sinðkeÞ

�
þ Y ð2kþ1Þ

n ðhÞ cosðkeÞ
�
;

where Y ðkÞ
n ðhÞ is in fact a polynomial in cos h having the same parity as k. The integrand on the right-hand

side of (12) may be expanded as a trigonometric polynomial in e. Noting that ZnðeÞ is a finite sum of sines,

we may drop the terms in the integrand that result in cosines to obtain

ðnþ 1ÞZ�
nþ1ðeÞ ¼

1

2pi
P:V:

Z e=2

e=2�p
2a cos hY ð1Þ

n ðhÞ sin eþ 1þ a cosð2hÞ cos e½ �
Xn
k¼1

Y ð2kÞ
n ðhÞ sinðkeÞ

(

þ 2a cos h sin e
Xn
k¼1

Y ð2kþ1Þ
n ðhÞ cosðkeÞ

)
dh:

The integrand on the right-hand side of this last equation is an even polynomial in cos h and, hence, a

perfectly regular function of h with period p. The integral is proper and we may thus write

ðnþ 1ÞZ�
nþ1ðeÞ ¼

1

2pi

Z p

0

2a cos hY ð1Þ
n ðhÞ sin e

(
þ 1½ þ a cosð2hÞ cos e�

Xn
k¼1

Y ð2kÞ
n ðhÞ sinðkeÞ

þ 2a cos h sin e
Xn
k¼1

Y ð2kþ1Þ
n ðhÞ cosðkeÞ

)
dh; ð13Þ

which is easily evaluated.

In summary, using

Z0ðeÞ ¼ e and Y0ðe; e0Þ ¼ cot
e� e0

2

� �
;

we can compute Zn for nP 1 by recurrence via the relations (10), (11) and (13). Although the com-

putational complexity increases rapidly, we managed to compute Zn in exact arithmetic for 06 n6 43

and general a. The computational work is much reduced if one computes the coefficients for specific

values of a. Thus, for a ¼ 1 and a ¼ 1 (see Sections 4 and 5), we computed the first 60 and 77 co-
efficients, respectively.

216 M.A.H. Khan et al. / Journal of Computational Physics 187 (2003) 212–229



3. Hermite–Paé approximants

Meiron et al. [10] use Pad�ee approximants in order to compute the critical time tc for various values of a.
In this section, we describe a wide class of approximants – including Pad�ee – and discuss some of the

principles that should guide their use. For the sake of brevity, we have confined our discussion to the class

of Hermite–Pad�ee approximants since these are arguably the most widely used in the applications. However,

it should be noted that there exist other useful approximants outside this class (see [1]), and other useful

methods of series summation that do not rely on approximants (see [19]).
We say that a function is an approximant for the series

U :¼
X1
n¼0

un k
n ð14Þ

if it shares with U the same first few Taylor coefficients at k ¼ 0. Thus, the simplest approximants are the

partial sums of the series U . When the series converges rapidly, such polynomial approximants can provide

good approximations of the sum. In practice, however, the presence of singularities in the complex k plane

often prevents rapid convergence. It is then necessary to seek approximants in a larger class of functions.

In the Pad�ee method, the approximant is sought in the class of rational functions. When applied to the

N th partial sum of the series (14), it involves the construction of two polynomials in k, say P ð0Þ
N and P ð1Þ

N ,
such that

deg P ð0Þ
N þ deg P ð1Þ

N þ 1 ¼ N and P ð0Þ
N U þ P ð1Þ

N ¼ OðkN Þ as k ! 0: ð15Þ

The rational approximant UN is then defined by

P ð0Þ
N UN þ P ð1Þ

N ¼ 0: ð16Þ

We emphasise that only the first N coefficients un of the series U are required in order to construct the P ð‘Þ
N .

The second equation in (15) can be expressed as a linear system of equations for the unknown coefficients of

the polynomials P ð‘Þ
N . In order to obtain a unique solution, one must normalise in some way; for example by

setting

P ð0Þ
N ð0Þ ¼ 1:

The first equation in (15) then simply ensures that the matrix associated with the system is square. The poles

of UN are the zeroes of the polynomial P ð0Þ
N and the hope is that one of these zeroes, say kc;N , tends to the

location, say kc, of the dominant singularity of U as N increases. In practice, one finds that the method is

most accurate when the dominant singularity of U is a pole.

The principle underlying any approximant method is that the (difficult) problem to which it is applied

(e.g. the Birkhoff–Rott equation) is replaced by a more tractable problem (e.g. Eq. (16)) involving poly-

nomial coefficients. Given a particular problem, the ideal approximant method replaces it by one that is rich
enough to reproduce the essential features of the true solution, but simple enough that these features can be

deduced easily once the polynomial coefficients are known.

Hermite–Pad�ee approximation generalises the Pad�ee method in the following sense: Given d power series

U ð1Þ, . . ., U ðdÞ, one constructs polynomials P ð‘Þ
N such that

deg P ð0Þ
N þ deg P ð1Þ

N þ � � � þ deg P ðdÞ
N þ d ¼ N ð17Þ

and

P ð0Þ
N U ðdÞ þ P ð1Þ

N U ðd�1Þ þ � � � þ P ðdÞ
N ¼ OðkN Þ as k ! 0 : ð18Þ
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For functions with logarithmic or algebraic singularities, special types of Hermite–Pad�ee approximants can

sometimes outperform the Pad�ee method. For instance, suppose that

UðkÞ � U0 
 U1 ðkc � kÞa as k ! kc: ð19Þ

Then a good summation method is to choose a suitably large natural number d, set

U ð‘Þ ¼ U ‘; 16 ‘6 d;

and define an algebraic approximant UN of U by

P ð0Þ
N Ud

N þ P ð1Þ
N Ud�1

N þ � � � þ P ðdÞ
N ¼ 0: ð20Þ

Note that, for d > 1, UN is a multivalued function of k with d branches. Furthermore, its singularities are of

the form

UN ðkÞ � U0;N 
 U1;N ðkc;N � kÞaN as k ! kc;N ; ð21Þ

where the numbers U0;N , U1;N , aN and kc;N can be deduced easily from the polynomials P ð‘Þ
N . The precise

formulae are given in the appendix. Thus, if the assumption (19) is valid, then these numbers can provide

good approximations of the true singularity parameters U0, U1, a and kc for N sufficiently large.

Alternatively, one may use

U ð‘Þ ¼ D‘�1U ; 16 ‘6 d;

where D denotes differentiation with respect to k, and define a (single-valued) differential approximant UN of

U by

P ð0Þ
N Dd�1UN þ P ð1Þ

N Dd�2UN þ � � � þ P ðdÞ
N ¼ 0: ð22Þ

The singularities of UN need not always be of the form (21) but, when they are, the numbers aN and kc;N can

again be obtained by formulae analogous to the algebraic case; these can be found in the appendix.

In order to characterise the approximant UN completely, one must choose the degree of each of the

polynomials P ð‘Þ
N in (17). A popular strategy is to take

deg P ð0Þ
N ¼ � � � ¼ deg P ðdÞ

N ; dfixed and N ! 1: ð23Þ

Sergeyev [13] showed how such diagonal approximants can be constructed by recurrence: First, choose

polynomials P ð‘Þ
N such that (18) holds for N ¼ 0; . . . ; d. Next, given P ð‘Þ

N for N ¼ n� 1; . . . ; nþ d � 1, set

P ð‘Þ
nþd ¼ kP ð‘Þ

n�1 þ
Xd
k¼1

cð‘Þn P ð‘Þ
nþk�1; ð24Þ

where the coefficients cð‘Þn are chosen so that (18) holds for N ¼ nþ d.
One must also choose the starting polynomials. In the case of algebraic approximants, we follow

Sergeyev [13] in taking P ð‘Þ
N so that

P ð0Þ
N Ud þ P ð1Þ

N Ud�1 þ � � � þ P ðdÞ
N ¼ UðkÞ½ � Uð0Þ�N for N ¼ 0; 1; . . . ; d:

In the case of differential approximants, we set, for N ¼ 0; 1; . . . ; d,

P ð‘Þ
N ¼ 0 if ‘ < d � N ;

1 if ‘ ¼ d � N ;

�
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and let P ð‘Þ
N for ‘ > d � N be constants such that (18) holds. Such constants can be calculated by solving a

simple linear system of equations.

Drazin and Tourigny [5] proposed a different strategy for constructing algebraic approximants in which

one takes

deg P ð‘Þ
N ¼ ‘ for 06 ‘6 d and N ¼ d

2
ðd þ 3Þ as d ! 1: ð25Þ

This has been shown to be a good approach when the analytic function represented by the series U has a

countable infinity of branches [17].

4. Disturbances of unit initial amplitude

There is a general consensus that, for a suitable choice of functional U , the model (19) with k ¼ t is an
adequate description of the dominant singularity that develops on the vortex sheet. In order to identify the

particular type of Hermite–Pad�ee approximant that is best for the computation of tc and a, we now consider

the particular case a ¼ 1 in some depth. We emphasise that there is nothing really special about this choice

of a; we expect our findings to be typical of the general case where a is finite and non-zero.

The coefficients Zn of the Taylor series (7) are trigonometric polynomials in e, and it is impractical to
calculate Hermite–Pad�ee approximants with such complicated expressions. For this reason, Meiron et al.

[10] applied the Pad�ee method to the series forZ 2p

0

opz
oep

ðe; tÞ
����

����
2p

de; p ¼ 1; 2; 4: ð26Þ

This functional is an even function of t and so has the disadvantage that the number of coefficients available

for the analysis is effectively halved – an undesirable loss of information. We prefer to use

UðkÞ :¼ oz
oe

ð0; tÞ; k ¼ t: ð27Þ

In Tables 1 and 2, we show the estimates of tc obtained by using various differential or algebraic ap-

proximants. These estimates, which we denote by tc;N , are calculated by using the formulae for kc;N in

Appendix A. Since we expect the critical time to be real, the imaginary part of tc;N gives a lower bound for

the error and thus some measure of the accuracy attained. The results indicate that better approximations

are obtained by taking d > 1. There might be a very slight advantage in using the method of Drazin and
Tourigny [5] rather than the usual strategy of keeping d fixed as N increases (see the third column of Table

3). We conclude with reasonable confidence that

tc ¼ 1:080316� 10�6:

Cowley et al. [4] analysed the local form of the singularity and obtained the asymptotic relation

oz
oe

ð0; tÞ � U0 
 U1ðtc � tÞa as t ! tc ð28Þ

with a ¼ 1=2. We can use approximants to determine a, U0 and U1 directly. First, from the formula (50)

with k ¼ t, we obtain estimates for a by using differential approximants. The results shown in Table 2

suggest that

a ¼ 1

2
� 10�2:
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Then, using the algebraic approximants of Drazin and Tourigny [5], the formulae (47) and (48) with k ¼ t
provide estimates for tc, U0 and U1; these are listed in Table 3. The estimates appear to converge, albeit

slowly, as N increases.

Table 2

Estimates tc;N and aN of tc and a for the series (27) obtained by differential approximants as N increases

N d ¼ 2 d ¼ 3

tc;N aN tc;N aN

5 0.0000000+ 1.7873652i 7.263+ 0.000i – –

9 1.0696264) 0.0089512i 0.655) 0.001i 0.0000000) 2.0958632i 71.51+ 0.000i

14 1.0882841) 0.0105829i 0.296+ 0.146i 1.1318756) 0.0673574i 0.740) 4.296i

20 1.0813245+ 0.0006382i 0.467) 0.049i 1.0802258+ 0.0000849i 0.507) 0.022i

27 1.0802842+ 0.0001397i 0.506) 0.024i 1.0802843+ 0.0001229i 0.505) 0.023i

35 1.0803058+ 0.0000549i 0.503) 0.018i 1.0803213+ 0.0000307i 0.501) 0.014i

44 1.0803152+ 0.0000183i 0.501) 0.012i 1.0803141+ 0.0000095i 0.502) 0.009i

54 1.0803151) 0.0000066i 0.501) 0.008i 1.0803160+ 0.0000049i 0.495) 0.012i

N d ¼ 4 d ¼ 5

tc;N aN tc;N aN

5 – – – –

9 0.0000000+ 7.9713856i 867.4+ 0.000i – –

14 1.1384340+ 0.0181276i ) 1.86+ 0.534i 0.0000000) 4.7486422i 853.9) 0.000i

20 1.0810490+ 0.0003045i 0.496) 0.037i 1.0821553+ 0.0012680i 0.385) 0.073i

27 1.0803447) 0.0001092i 0.494) 0.009i 1.0803680+ 0.0000326i 0.495) 0.016i

35 1.0803025+ 0.0000251i 0.500) 0.013i 1.0803102+ 0.0000242i 0.502) 0.013i

44 1.0803145+ 0.0000128i 0.502) 0.011i 1.0803161+ 0.0000063i 0.501) 0.008i

54 1.0803160) 0.0000037i 0.501) 0.008i 1.0803170+ 0.0000032i 0.499) 0.007i

The order of the differential equation defining the approximant is d � 1. N is the number of series coefficients used.

Table 1

Estimate tc;N of tc for the series (27) obtained by diagonal algebraic approximants as N increases

N d ¼ 1 d ¼ 2 d ¼ 3

5 2.0761873) 0.7941118i 0.9011885+0.1489890i 0.8999586+ 0.1453168i

9 1.3587025) 0.0337188i 1.0913431) 0.0073643i 1.1162063) 0.0346961i

14 1.2144946) 0.0011937i 1.0797230) 0.0026782i 1.0803420) 0.0033167i

20 1.1488424) 0.0174031i 1.0802010) 0.0009084i 1.0802406) 0.0005642i

27 1.1075638+ 0.0045061i 1.0803508) 0.0001520i 1.0803171) 0.0000777i

35 1.1010513) 0.0014642i 1.0803053) 0.0000817i 1.0803177) 0.0000355i

44 1.0948613) 0.0019761i 1.0803153) 0.0000246i 1.0803236) 0.0000091i

54 1.0897742) 0.0004540i 1.0803164) 0.0000076i 1.0803167) 0.0000029i

N d ¼ 4 d ¼ 8 d ¼ 9

5 0.5104617) 0.0896955i – –

9 1.2478041) 0.0242760i 0.5884059+0.2937054i –

14 1.0788934) 0.0044051i 1.0816066) 0.0127262i 1.0886293) 0.0079029i

20 1.0804514) 0.0003947i 1.0798093) 0.0004621i 1.0795210) 0.0008626i

27 1.0803508) 0.0001072i 1.0803150) 0.0001056i 1.0802968) 0.0000844i

35 1.0803253) 0.0000262i 1.0802855) 0.0000483i 1.0803084) 0.0000192i

44 1.0803130) 0.0000063i 1.0803152) 0.0000046i 1.0803166) 0.0000064i

54 1.0803164) 0.0000022i 1.0803169) 0.0000018i 1.0803161) 0.0000022i

d is the degree of the algebraic equation defining the approximant. N is the number of series coefficients used.
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As a function of e, the vortex sheet has a singularity at e ¼ 0 when t ¼ tc. As often when dealing with

singularities, it is illuminating to think of the independent variable as complex. Cowley et al. [4] argued that,
for every t > 0, there exist singularities of z in the complex e plane. They conjectured that there is a par-

ticular singularity at e ¼ es, say, that moves along the imaginary axis as t increases until it reaches the origin
at t ¼ tc. By using an approximation of the Birkhoff–Rott equation valid for Ime � 1, Cowley et al. [4]

obtained the formula

es 
 i ln
2

at

� �
as t ! 0þ : ð29Þ

The series (7) can in fact be used to compute es directly. Indeed, let us write z as a Fourier series

zðe; tÞ ¼ eþ
X
n2Z

AnðtÞ expðineÞ: ð30Þ

Using the fact that A0 ¼ 0 and that A�n ¼ �An for nP 1, we obtain

zðe; tÞ ¼ eþ F expðieÞð Þ � F expðð � ieÞÞ; ð31Þ

where F is the power series

F ðnÞ ¼
X1
n¼1

AnðtÞnn: ð32Þ

If F has a singularity at n ¼ nsðtÞ of the form

F ðnÞ � F0 
 F1ðns � nÞc as n ! ns; ð33Þ

then z has singularities at

esðtÞ ¼ �½arg ns � i lnjnsj�: ð34Þ

Furthermore, if we assume that there no other singularities nearer to the real axis, then the singularity ns in

the upper half plane determines the decay of An as n ! 1. More precisely, as shown in Appendix A of [4],

An 
 Ccn�c�1 expð�n½ln jnsj þ i argns�Þ as n ! 1:

Now, the Fourier coefficient AnðtÞ is not known exactly, but the partial sums

AðKÞ
n :¼ 1

2i

XK
k¼n

ZðnÞ
k tk ¼ AnðtÞ þOðtKþ1Þ as t ! 0:

Table 3

Estimates tc;N , U0;N and U1;N of tc, U0 and U1 for the series (27), obtained by the method of Drazin and Tourigny [5] as N increases

d N tc;N U0;N U1;N

2 5 1.0214806+ 0.0875912i 0.4306569+ 0.4656750i 0.7380787+ 0.0000000i

3 9 1.0977418) 0.0195386i 0.3867584+ 0.6122710i 0.8628543+ 0.0554563i

4 14 1.0787921) 0.0023551i 0.4298862+ 0.5645777i 0.7084770+ 0.0059807i

5 20 1.0802904) 0.0005515i 0.4245018+ 0.5572135i 0.7186609+ 0.0481350i

6 27 1.0802553) 0.0000889i 0.4250058+ 0.5544186i 0.7079524+ 0.0686477i

7 35 1.0803171) 0.0000372i 0.4244774+ 0.5538710i 0.7134257+ 0.0770018i

8 44 1.0803170) 0.0000062i 0.4245040+ 0.5534665i 0.7122967+ 0.0845764i

9 54 1.0803160) 0.0000010i 0.4245355+ 0.5533479i 0.7110210+ 0.0885909i

d is the degree of the algebraic equation defining the approximant. N is the number of series coefficients used.
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of its Taylor series can be used to approximate it. The results shown in Table 4 are obtained by using

differential approximants for the series

X1
n¼1

AðKÞ
n nn:

with K ¼ 60. We believe them to be accurate to the number of decimals shown.

These results are in complete agreement with those of Cowley et al. [4]: A 3=2-type singularity moves

from infinity along the imaginary axis and reaches the real axis at t ¼ tc (see Fig. 2). The fact that c ¼ 3=2
implies that

AnðtcÞ ¼ Oðn�5=2Þ as n ! 1;

as predicted by Moore [11]. However, it should be noted that, as t ! tc, the coefficients AðKÞ
n become less

accurate approximations of the true Fourier coefficients An, and so it is difficult to obtain good estimates of

ns and c very near to the critical time. Nevertheless, our calculations suggest that the nature of the sin-
gularity does not change in that limit.

We end this section by remarking that we have performed similar calculations for a wide range of

values of the parameter a. In particular, we have computed the critical time to a relative accuracy that

Table 4

The complex singularity (33) as a function of time

tc=t jnsj arg ns c ln jnsj= lnð2=atÞ

2 2.82079 0.00000 1.5000+ 0.0000i 0.7922

4 6.48217 0.00000 1.5000+ 0.0000i 0.9335

8 13.8645 0.00000 1.5000+ 0.0000i 0.9755

16 28.6632 0.00000 1.5000+ 0.0000i 0.9902

32 58.2782 0.00000 1.5000+ 0.0000i 0.9960

64 117.517 0.00000 1.5000+ 0.0000i 0.9983

128 235.999 0.00000 1.5000+ 0.0000i 0.9993

256 472.966 0.00000 1.5000+ 0.0000i 0.9997

512 946.901 0.00000 1.5000+ 0.0000i 0.9999

1024 1894.77 0.00000 1.5000+ 0.0000i 0.9999

2

4

6

0.5 1

Im es

t

Fig. 2. The imaginary part of esðtÞ, the singularity of z in the complex e plane. Note that ImesðtÞ ! 0 as t ! tc ¼ 1:08.
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is no less than 10�4 and have thus obtained the solid curve shown in Fig. 1. The results confirm that

the formula (6) found by Moore is correct in the limit a ! 0. When 0 < a < 1, the formula slightly

underestimates the critical time, but still yields a remarkably useful approximation even when a is not

so small.

Though the parameters tc, U0 and U1 in the model (28) change with a, the exponent a itself appears to be

independent of a. Furthermore, our calculations suggest that, regardless of the particular value of a, the
singularity forms according to the same scenario as in the case a ¼ 1: At t ¼ 0þ, a 3=2-type singularity

appears at infinity in the complex e plane and moves down along the imaginary axis until it reaches the
origin at t ¼ tc.

5. Disturbances of infinite initial amplitude

Moore�s analysis loses its validity as a ! 1. Although this limit has little physical relevance, its study is

of some mathematical interest and completes our understanding of the global dependence of the singu-

larities upon the parameter a.
The results in Table 5 indicate that atc approaches a limiting value as a ! 1. To study this limit, we

introduce the new variable

s ¼ at;

so that (1) becomes

oẑz�

os
ðe; sÞ ¼ 1

4pi
P:V:

Z 2p

0

1

a

�
þ cos e0

�
cot

ẑzðe; sÞ � ẑzðe0; sÞ
2

 !
de0: ð35Þ

ẑz may be obtained in the form

ẑzðe; sÞ ¼ eþ
X1
n¼1

sn
Xn
k¼0

ẑzðkÞn ð1=aÞ sinðkeÞ
 !

; ð36Þ

where ẑzðkÞn is a polynomial of degree n. Of course, for 0 6¼ a < 1, this expansion is equivalent to the Ma-
cLaurin series (7) in powers of t, in the sense that the finite partial sums carry precisely the same infor-

mation. All we have done is to rearrange the series in a way that is computationally convenient when

investigating the limit a ! 1. Indeed, the Taylor coefficients of ẑz may be computed by using recurrence

relations analogous to those of Section 2.

Before launching into a detailed calculation of the dominant singularity of ẑz, it is useful to study the

Fourier version of Eq. (35) in the manner of Moore. Let us write

ẑzðe; sÞ ¼ eþ
X
n2Z

ÂAnðsÞ expðineÞ: ð37Þ

Table 5

atc as a increases

a 2 4 8 16 32 64 128 256

atc 1.345 1.557 1.702 1.788 1.836 1.861 1.874 1.881
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Following in Moore�s footsteps, we can then express Eq. (35) in the equivalent form

d ÂA�
n

ds
¼ 1

4
dn1 þ

X1
‘¼1

1

a

X
n1þ���þn‘¼n
n1;...;n‘2Z

Iðn1; . . . ; n‘Þ ÂAn1 � � � ÂAn‘

8>>>>><
>>>>>:

þ 1

2

X
n1þ���þn‘¼n�1

n1;...n‘2Z

Jðn1; . . . ; n‘Þ ÂAn1 � � � ÂAn‘

þ 1

2

X
n1þ���þn‘¼nþ1

n1;...;n‘2Z

Kðn1; . . . ; n‘Þ ÂAn1 � � � ÂAn‘

9>>>>>=
>>>>>;

ð38Þ

for n 2 N, where ÂA0 ¼ 0, ÂAn ¼ � ÂA�n for n6 � 1 and d is the familiar Kronecker delta. In this expression

Iðn1; . . . ; n‘Þ ¼
1

2pi
P:V:

Z 1

�1

Y‘
m¼1

1

 
� expðinmuÞ

!
du
u‘þ1

;

Jðn1; . . . ; n‘Þ ¼
1

2pi
P:V:

Z 1

�1
expðiuÞ

Y‘
m¼1

1

 
� expðinmuÞ

!
du
u‘þ1

; ð39Þ

and

Kðn1; . . . ; n‘Þ ¼
1

2pi
P:V:

Z 1

�1
expð�iuÞ

Y‘
m¼1

1

 
� expðinmuÞ

!
du
u‘þ1

:

This is an infinite system of differential equations for the Fourier coefficients ÂAn which must be solved

subject to the initial condition

Anð0Þ ¼ 0 8n 2 Z: ð40Þ
The nth Fourier coefficient is of the form

ÂAn ¼ sjnj ÂAn0 þ sjnjþ2 ÂAn2 þ sjnjþ4 ÂAn4 þ � � � ð41Þ

We gain some insight into the properties of ẑz for large a by substituting this expansion in (38). Setting

1=a ¼ 0 and retaining the terms of Oðsjnj�1Þ, we find

nÂA�
n0 ¼

1

4
dn1 þ

1

2

Xn�1

‘¼1

X
n1þ���þn‘¼n�1

n1;...;n‘2N

Jðn1; . . . ; n‘Þ ÂAn10 � � � ÂAn‘0

8>>>><
>>>>:

9>>>>=
>>>>;

ð42Þ

for n 2 N, where ÂAn0ð0Þ ¼ 0. Now, for positive values of n1; . . . ; n‘, the integral (39) may be evaluated to yield

Jðn1; . . . ; n‘Þ ¼
ð�iÞ‘

2
n1; . . . ; n‘:

Using this, and setting

an ¼ �inÂAn0;
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(42) becomes

a�nþ1 ¼
i

4
dn0 þ

i

4

Xn
‘¼1

X
n1þ���þn‘¼n
n1;...;n‘2N

an1 � � � an‘

8>>>><
>>>>:

9>>>>=
>>>>;

ð43Þ

for n ¼ 0; 1; . . . We introduce the generating function

GðxÞ ¼
X1
n¼1

anxn; x 2 R:

(3.4) is then equivalent to

G� ¼ ix
4
ð1þ Gþ G2 þ � � �Þ ¼ ix

4

1

1� G
:

This is readily solved to yield

GðxÞ ¼ ix
4
þ 1

2
1
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=4

p �
:

Hence, we obtain

ÂAn0 ¼
1
4

if n ¼ 1;
i
2

1
4n

ðn�2Þ!
ðn=2Þ!ðn=2Þ! if n is even;

0 otherwise:

8<
:

By Stirling�s formula

ÂAn0 
 �
ffiffiffiffiffiffiffiffi
2=p

p
n�5=2 2�n as n ! 1; n even; 1=a ¼ 0:

This suggests that zðe; tÞ has a singularity at t ¼ tc where

tc �
2

a
for a � 1;

and that, at the singularity, the Fourier coefficients of z decay like Oðn�5=2Þ. In fact, however, the results in

Table 5 indicate that atc is slightly less than 2 for a ¼ 1. This small discrepancy with our analysis is not

surprising because sjnj ÂAn0 cannot reasonably be expected to approximate ÂAn well when s � 2.

Let us now use approximants to obtain more reliable results. First, a calculation using the series sum-

mation technique of Drazin and Tourigny [5] yields (see Table 6)

sc ¼ 1:88712� 10�5: ð44Þ

If one assumes that

oẑz
oe

ð0; sÞ � ÛU0 
 ÛU1 scð � sÞa as s ! sc; ð45Þ

then differential approximants give, as in the case where a is finite,

a � 1

2
:
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Estimates of ÛU0 and ÛU1 are listed in Table 6.

As in the previous section, we can study the evolution of the singularities of ẑz in the complex e plane by
considering the series

F̂F ðnÞ ¼
X1
n¼1

ÂAnðsÞnn:

We then find that F̂F has a singularity at n ¼ nsðtÞ of the form

F̂F ðnÞ � F̂F0 
 F̂F1 nsð � nÞc;

where c and ns are listed in Table 7. From these results, we deduce that, for 0 < s < sc, ẑz has a 3=2-type
singularity at e ¼ esðsÞ such that

esðsÞ 
 i ln
2

s

� �
as s ! 0:

This singularity moves down along the imaginary axis and reaches the origin at s ¼ sc.

6. Conclusion

In this paper, we have used power series to study the singularity that forms on a vortex sheet subject to
the Kelvin–Helmholtz instability. By exploiting various generalisations of the Pad�ee method, we have ob-

tained accurate numerical approximations of the location and type of the singularity. One of our findings is

that, if a is the amplitude of the initial perturbation in the vortex sheet strength, then the critical time tc is
given by

Table 6

The approximations of sc, ÛU0 and ÛU1 by the method of Drazin and Tourigny for 26 d 6 11

N sc;N ÛU0;N ÛU1;N

35 1.8871360) 0.0000674i 0.3315759+ 0.7437507i 0.5056371+ 0.1807457i

44 1.8871187) 0.0000354i 0.3317185+ 0.7435685i 0.5038936+ 0.1828748i

54 1.8871232) 0.0000141i 0.3317443+ 0.7434008i 0.5031364+ 0.1853014i

65 1.8871224) 0.0000031i 0.3317993+ 0.7432900i 0.5015523+ 0.1875465i

77 1.8871234) 0.0000018i 0.3317956+ 0.7432677i 0.5014898+ 0.1881870i

Table 7

Estimates for the complex singularity as a function of s

sc=s jnsj arg ns c ln jnsj= lnð2=sÞ

2 2.11067 0.00000 1.5000+ 0.0000i 0.9944

4 4.23688 0.00000 1.5000+ 0.0000i 0.9996

8 8.47761 0.00000 1.5000+ 0.0000i 0.9999

16 16.9566 0.00000 1.5000+ 0.0000i 1.0000

32 33.9139 0.00000 1.5000+ 0.0000i 1.0000

64 67.8281 0.00000 1.5000+ 0.0000i 1.0000

128 135.656 0.00000 1.5000+ 0.0000i 1.0000

256 271.313 0.00000 1.5000+ 0.0000i 1.0000

512 542.626 0.00000 1.5000+ 0.0000i 1.0000

1024 1085.25 0.00000 1.5000+ 0.0000i 1.0000
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a tc 
 1:88712 . . . as a ! 1:

More generally, our results confirm the conjecture of Cowley et al. [4], according to which a singularity
forms spontaneously in the complex e plane at t ¼ 0þ and moves until it impinges on the real axis at a

critical time tc. This conjecture is based on an approximation valid for Ime � 1. However, our calculations

show that it is qualitatively correct even as t ! tc. Remarkably, the nature of the singularity appears to be

independent of t and a.
The results of this paper are significant in two different ways. First, they give new and more accurate

results of the classic problem of Kelvin–Helmholtz instability. This we have described above. Secondly,

they provide a basis for guidance about what method of summing power series should be chosen for many

problems in fluid mechanics and similar subjects. We elaborate this guidance here.
The computing costs of finding the coefficients of a power series in a practical application are usually

far higher than the costs of processing them by a summation method. So it behoves the user to exploit

all the available information about the problem that gives rise to the series, without filtering or

omitting data. This is one reason why our results are more accurate than those in Meiron et al. [10],

which were obtained from a particular functional of the solution leading to a series in powers of t2

rather than t.
Rational Pad�ee approximation seems to have been used by almost all fluid dynamicists, in preference to

(or perhaps ignorance of) nonlinear or differential approximants. A notable exception to this ‘‘rule’’ is Pelz
and Gulak�s use of a few nonlinear algebraic approximants to sum a series originating from an initial-value

problem similar to the Taylor–Green problem [12]. This paper demonstrates the need not to restrict oneself

to the Pad�ee method.

It is a rule-of-thumb among the community who sum power series that if N coefficients of a series are

used then each coefficient must be known to N decimal places though, of course, no such simple rule can

be expected to be universally applicable. Ely and Baker [7] made use of interval arithmetic to combat

problems associated with round-off errors. For the most part, we have performed the calculations in

exact rational arithmetic, thus avoiding the danger that very small errors in the early coefficients might
undermine the accuracy of the approximant method. It is wise to follow our example whenever possible,

but the difficulty of computing the coefficients for some problems may require the use of multiprecision

floating-point arithmetic. We have done this in one instance, when computing the singularities of the

vortex sheet, viewed as a function of the Lagrangian marker variable e. The tracing of complex singu-

larities of functions defined by their Fourier series by use of approximant methods is an exciting, ap-

parently new, development. One can think of many other problems where this approach may be used; see

for instance Sulem et al. [16].

Rapid convergence of summation, when it takes place, gives great confidence that the error is in fact
small and that the method of summation chosen not only gives accurate numerical results, but also gives the

asymptotic form of the singularity beyond reasonable doubt. Superexponential convergence gives a con-

viction of correctness which mere monotonic convergence does not. While some of the methods used in this

study have been relatively successful when compared to those used previously, it is fair to say that we have

no yet found an ideal method of summation for the Kelvin–Helmholtz problem. There is every incentive to

continue the search for better methods, for though the detailed results obtained by them can never amount

to a proof of the existence or form of the singularity, they can nevertheless guide the mathematician in

forming plausible conjectures and perhaps suggest the method of proof.

Note added in proof

Professor Drazin passed away in January 2002 while this paper was under review.
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Appendix A. Formulae for the singularity parameters of some Hermite–Pad approximants

Algebraic approximants. Let UN be the approximant defined by Eq. (20). Then the singularities of UN

have the form (21). The location of the singularities in the complex k plane can be found by solving si-

multaneously the equations

P ð0Þ
N ðkc;N ÞUd

0;N þ P ð1Þ
N ðkc;N ÞUd�1

0;N þ � � � þ P ðdÞ
N ðkc;N Þ ¼ 0; ð46Þ

dP ð0Þ
N ðkc;N ÞUd�1

0;N þ ðd � 1ÞP ð1Þ
N ðkc;N ÞUd�2

0;N þ � � � þ P ðd�1Þ
N ðkc;NÞ ¼ 0; ð47Þ

for the unknown pair ðkc;N ;U0;N Þ. The exponent aN and the coefficient U1;N can then easily be found by using

Newton�s polygon algorithm. However, it is well known that, in the case of algebraic equations, the only

singularities that are structurally stable are simple turning points. Hence, in practice, one almost invariably

obtains aN ¼ 1=2, and the coefficient U1;N is then given by the formula

U 2
1;N ¼

Ud
0;NDP

ð0Þ
N ðkc;N Þ þ Ud�1

0;N DP ð1Þ
N ðkc;N Þ þ � � � þ DP ðdÞ

N ðkc;N Þ
d
2

� �
Ud�2

0;N P ð0Þ
N ðkc;N Þ þ d � 1ð Þ2Ud�3

0;N P ð1Þ
N ðkc;NÞ þ � � � þ P ðd�2Þ

N ðkc;N Þ
; ð48Þ

where D denotes differentiation with respect to k.
Differential approximants. Next, we consider the case where UN is the approximant that solves the dif-

ferential equation (22). Then, generically, the singularities kc;N of UN correspond to zeroes of the leading

coefficient. Hence

P ð0Þ
N ðkc;N Þ ¼ 0: ð49Þ

If we assume a singularity of the form (21), then

aN ¼ d � 2� P ð1Þ
N ðkc;N Þ

DP ð0Þ
N ðkc;N Þ

: ð50Þ

It has already been mentioned that the singularities of algebraic approximants are almost invariably of

square-root type. The singularities of differential approximants are not so restricted. Hence, differential

approximants should be preferred if the exponent a in the model (19) is the parameter of interest.
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